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Executive Summary 
 

The Federal Highway Administration issues the Mechanistic Empirical Pavement 
Design Guide to aid engineers in improving paved road design. Precise truck weight 
input data is necessary to calculate optimal pavement thickness. To comply, many 
states have installed permanent Weigh-in-Motion (WIM) sites to gather such 
information. Expanding site coverage to include additional roadways and highways 
would improve data accuracy; however, doing so requires significant roadside 
construction and costly infrastructure support. This report presents deployment results 
of a novel portable WIM system and compares captured data with that collected at a 
nearby permanent WIM system. Design, development, and road-installation details of 
the heavy-vehicle centric, portable WIM system are also provided. Outcomes 
demonstrate that the portable system maintains data quality but for short intervals and 
provides a viable alternative to permanent systems at merely 10 percent of the cost.   

This report presents results of a newly developed portable WIM system that uses off-
the-shelf components and commercially available WIM controllers. The commercial 
WIM controller used in this project was IRD iSINC Lite. The fabricated portable system 
could be promoted as an alternative WIM monitoring solution to permanent WIM 
systems and/or static scale stations, both of which are extremely expensive to install on 
highways. The portable WIM uses RoadTrax BL piezoelectric class-1 sensors, 
galvanized metal fixtures equipped with pocket tapes to house the sensors, and a trailer 
with cabinet to house WIM electronics, batteries, and REECE device for real-time 
monitoring. The system is solar powered with three 100-Watt panels. Total cost of 
system is roughly $20,000. 

The developed portable WIM system was deployed at various locations for the duration 
of the project. However, the majority of the deployments occurred on ODOT WIM16 
located on US412 with concrete roadway. An optimal installation and on-road sensor 
concrete affixing processes were developed to allow extended deployment periods of 
the portable WIM system. System performance showed acceptable WIM measurement 
results with little variations within the first 15 days following the sensor road installation. 
Portable WIM data was compared to data collected at nearby permanent WIM sites. 
Error and regression analyses were performed. Root mean square errors and 
correlation coefficient were calculated on a record-by-record and aggregate basis for 
GVW, speed, classification, and FXW. 98% of successful vehicle classification by the 
portable WIM was achieved. 62% of detected class 9 vehicles had a GVW within 30% 
of that measured at the permanent WIM site.  
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Chapter I 

1 Introduction and Background 
1.1 Introduction 
Keeping the public’s roadways, highways, and bridges in good condition is not only vital 
to our nation’s safety, it is necessary to avoid expenditures in the billions of dollars each 
year for road repair and replacement. In 2009, a study of highway cost allocation 
conducted in the state of Oregon showed that heavy vehicles account for 79% (or $60 
million) of annual expenditures required for new roadway repaving. Likewise, heavy 
vehicles were responsible for 66.8% (or $27 million) for pavement and shoulder 
reconstruction; 65.1% or (or $145 million) for pavement and shoulder rehabilitations; 
and 61.5% (or $140 million) for pavement maintenance [1]. Road deterioration is the 
result of many factors, including: road characteristics (pavement materials and 
thickness); weather conditions (temperature cycles and precipitation); and dynamic 
interaction between vehicle and road (speed, suspension characteristics, and surface 
roughness), in addition to loads distinguished by axle spacing, tire pressure, and weight 
per axle [2]. Of these, vehicle axle weight proves to be the most significant factor for 
accelerating road wear. “Reducing the average weight of truck axles would substantially 
reduce the rate of pavement wear. Reducing the load on an axle by half, for example 
from 30,000 to 15,000lbs, would reduce wear by a factor of roughly 16”[2]. A study of 
the American Association of State Highway Transportation Officials, (AASHTO) [3] 
found that removing a single, significantly overweight truck (e.g., 20,000lbs above the 
weight limit) would have the same positive impact on roadway conditions as eliminating 
44,500 passenger vehicles [4]. Given this information, one can see that it is imperative 
to engineer a solution to reduce the rate of road deterioration resulting from heavy 
vehicle wear.  

Both appropriately weighted and overweight trucks are chiefly responsible for rapid road 
deterioration. Collecting accurate weight data to aid in pavement design, and then 
enforcing weight limit on highways could mitigate unnecessary wear. Accordingly, the 
life expectancy of roads and bridges would increase while maintenance costs would 
decrease.   

To slow the rate of road deterioration, weight-monitoring systems should be deployed 
across interstate and intrastate roadways and highways. The State of Oklahoma 
currently employs permanent weigh-in-motion (WIM) and/or static weight stations. 
However, high installation costs limit system implementation to interstate highways and 
state port of entries. Permanent WIM installation could exceed $200k per site, and static 
weight station installation could surpass $800k per site. The project reported herein 
presents research critical to implementing an inexpensive portable WIM system to 
monitor and enforce heavy vehicle weight limits. The system uses piezoelectric 
technology to detect and weigh traveling vehicles by measuring applied force. The 
system integrates a commercially-available WIM sensor and controller with a roadside 
embedded extensible computing equipment (REECE) unit.  
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1.2 Existing knowledge 
For over 40 years WIM technology has been considered an effective means of 
collecting data for highway planners, pavement designers, and weight enforcement. The 
American Society for Testing and Materials (ASTM) defines WIM as “the process of 
measuring the dynamic tire forces of a moving vehicle and estimating the corresponding 
tire loads of the static vehicle” [5]. Modern technologies enable WIM devices to collect 
dynamic information that can be compared to a static scale—defined in 1998 by the 
National Institute of Standards and Technology—for accurate measurement. With its 
dynamic capability, a WIM device can perform weight measurement for vehicles 
traveling at high speeds and minimize unnecessary stops and delays inherent with a 
more invasive type of regulation enforcement.   

WIM devices are commonly divided into three categories: permanent, semi-permanent, 
and portable systems. Each is comprised of two elements—a sensor and a controller—
for data collection and analysis. Categories are differentiated based on equipment 
portability. Permanent devices collect and analyze data inclusively at a single, fixed 
location. Although semi-permanent systems have sensors built into the pavement, the 
system controller can be relocated from one site to another. Portable device equipment, 
as inferred by the name, can be moved as a total system from site to site.   

Accurately measuring vehicle weight using a WIM proves challenging dependent upon 
various conditions, requirements, and factors (e.g. quality of the deployment site [6]; 
WIM sensor installation and road placement [7]; system calibration; vehicle dynamics at 
the time the WIM sensor is impacted; and accurate vehicle classification). 

WIM site selection criteria include grade, curvature, cross-slope, width, speed, surface 
smoothness, pavement rutting, visibility, and effects from dirt or leftover sand 
administered during winter conditions. A level grade is required to prevent the effects of 
weight shifting between fro nt and back axles of a loaded truck. WIM site performance is 
best when traffic is traveling at a constant speed. A straight and visible section of the 
road should be selected to prevent drivers from changing lanes or speed. Also, sites 
should be located away from highway entry and exit ramps. 

Vehicle speed, acceleration, and deceleration dynamics impact weight measurement 
accuracy as vehicles travel over the WIM sensor [8].  Likewise, vehicle air pressure and 
travel direction (e.g., lane changing) are also factors that impact measurement 
accuracy. Unlike site selection, such dynamics are beyond the control of WIM site 
selection.  

Improving the accuracy and increasing the life span of WIM devices has been 
investigated extensively in the literature. Generally, researchers have discussed two 
approaches. The first is improving calibration techniques, which can be established by 
either taking advantage of statistical analysis of road pavements and vehicle data [9]-
[10] or by applying signal processing techniques [11]-[12] on the originated signal by the 
sensor, thus increasing the system’s immunity to noise. The second approach is 
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applying new sensor technologies, such as acoustic wave WIM [13], multisensory 
WIM [14], fiber optics WIM [15][16], or bridge WIM [17][18], to the system. Although new 
solutions have been presented, WIM systems remain inadequate and suffer from high 
installation and maintenance costs. 

1.3 WIM sensors 
Durability, accuracy, ease of handling, on-road installation and maintenance, calibration 
needs and frequency, and cost are among varying factors that distinguish sensors. 
Although a completely reliable sensor is not yet commercially available, the following 
provides a list of current sensor types along with their published advantages and 
disadvantages [19]. 

1. Bending plate: 
• Advantages: 

o Designed for traffic data collection and weigh estimation use 
o High accuracy (more so than piezoelectric systems) and low cost (less 

than load cell systems) 
o Minimal maintenance with required refurbishing after four to five years 

• Disadvantages: 
o Less accurate than load cells 
o More expensive than piezoceramic 

2. Piezoceramic 
• Advantages: 

o High speed (e.g., 10 to 70 miles per hour) tolerance 
o Monitors up to four lanes 
o One piezoceramic   
o Least expensive 

• Disadvantages: 
o Less accurate than load cells and bending plate 
o Sensitive to temperature and speed variations 
o Replacement required within three years of deployment 

3. BL (Brass Linguni) Piezoceramic 
• Advantages: 

o In addition to those listed above for piezoceramic, BL piezoceramic 
sensors are extremely flexible, which proves to be significantly 
beneficial during installation 

• Disadvantages: 
o In addition to those listed above for peizoceramic, high output voltages 

(e.g., up to 35V) are generated  
4. Piezoquartz (partially piezoelectric but with newer technology) 

• Advantages: 
o Negligible temperature effect enables immunity to age or fatigue 
o Accuracy and cost within load cells range 

• Disadvantages: 
o Inoperative for portable WIM application 
o More expensive than other piezoceramic technologies 
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5. Hydraulic Load cell 
• Advantages: 

o Most accurate  
o Inoperative for traffic data collection and weight estimation 

• Disadvantages 
o Inoperative for portable WIM applications 
o Most expensive  
o Highest maintenance cost 
o Replacement required five years after deployment 

6. Capacitive Mat 
• Advantages: 

o  Functional for portable WIM applications 
o Monitors up to four lanes 

• Disadvantages 
o Less accurate than load cells, bending plates, or piezoquartz WIM 

devices 
o Trucks easily avoid driving on the mats 
o Trucks easily damage mats when breaks are applied to the mat 

surface  
o High equipment and installation cost are similar to those for load cell 

7. Fiber-optic based 
• Advantages: 

o Light-weight  
o Immune to electromagnetic interference 
o Hostile environment insertion 
o High bandwidth capability 
o Lower cost 
o Time-saving installation 
o Low power requirements 

• Disadvantages 
o Inaccurate weight measurements when using long fibers 
o Fragile 
o Limited availability—only one known device is available in the 

marketplace 
o Underdeveloped technology  

1.4 Current portable WIM systems 
Several commercial, low-speed portable WIM systems, including DAW300 PC from 
IRD [20], are currently available. This particular system uses portable bending plates 
that weigh vehicles up to 40,000lbs per axle at speeds up to 40 mph. The manufacturer 
claims ±3% accuracy for vehicles traveling < 8 mph, and ±4% for travel speeds between 
8 and 15 mph. From this information one can easily surmise that accuracy is inversely 
proportional to the speed of the vehicle. 

A more precise, low-speed portable WIM system for vehicle speeds of 5kph (i.e., 
approximately 3mph) is also commercially available. CAPTELS CET 10-4 SLIM [21] 

6 
       



Final project report 

weighs vehicles up to 60,000lbs per axle with a declared accuracy of ±2% for vehicles 
traveling at the recommended speed. This portable WIM system employs metal weight 
pads fashioned from strengthened aluminum and covered with a special coating.  

A highly accurate, slow-speed portable WIM developed by Oak Ridge National 
Laboratory (ORNL) [22] was originally designed for military use to control air force cargo 
loads. Advanced software features enable tracking and military vehicle location 
services, as well as calculating vehicle center-of-balance [23]. According to army 
specifications, two generations were developed. First generation (WIM Gen I) accuracy 
was ± 3%, and second generation (WIM Gen II) was less than ±1% [24].  

Dr. Taek Kwon from the University of Minnesota, Duluth has developed a weigh pad-
based portable WIM system with easy-to-install road sensors. Similar to our design, this 
particular WIM uses a RoadTrax BL piezoelectric sensor. The sensor is placed between 
two convey belts for rapid road installations. Notably, this configuration will not support 
deployment beyond one or two days. Software algorithms must be developed to 
calculate weight from piezoelectric sensors signals [25]. Unlike Kwon’s design, ours 
uses a commercially available WIM controller that does not require software 
development for weigh calculations. 

1.5 Report organization 
This report is organized as follows; Chapter I provides an extensive background 
presenting various sensors used in current WIM system developments. It further 
presents related research and/or development in portable WIM systems. Chapter II 
details the portable WIM system design including hardware and software components. 
Chapter III illustrates the sensor road installation and layout. It presents various layout 
configurations for one or two lane installations. Chapter IV explains the process of 
portable WIM equipment calibration necessary for accurate WIM measurements. It also 
presents results of the field-testing with a test-truck with a known load weight. Chapter V 
briefly examines the effect of temperature on the WIM measurements made with the 
developed portable system. Chapter VI attempts to explore the potential of identifying 
class 9 vehicles as they travel across the state of Oklahoma passing by various 
permanent WIM sites. Chapter VI and VII extensively analyzes the accuracy of the 
portable WIM measurements by comparing them with their counterpart measurements 
collected at the associated permanent site. WIM measurements including among others 
gross vehicle weight (GVW), front axle weight (FXW), vehicle classification, and 
misdetection have been examined record-by-record and in aggregate fashion. Chapter 
IX details a multivariable statistical tool to detect when permanent or portable WIM 
measurements are becoming inaccurate and a site recalibration is required to improve 
the system performance. Chapter X concludes this report.   
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Chapter II 

2 Portable WIM System 
2.1 Introduction 
This short chapter details the design of the portable WIM system. The system was 
developed to self-powered using solar panels and was equipped with broadband 
wireless telemetry system to allow for remote site communication.  

2.2 Portable WIM system design 
This section describes the portable WIM system components, namely sensors and 
trailer components, including cabinet, batteries, wiring, solar panel controllers, REECE, 
and WIM electronic controller, among others. The overall portable WIM system logical 
architecture is shown in Figure 2.1. 

 

 

 

 

 

 

 

  

2.2.1 Sensors and sensors housing 
Two 12ft, class 1 piezoelectric Roadtrax BL 
sensors were employed in the portable 
WIM system, as shown in Figure 2.2. This 
technology has proven highly effective for 
traffic applications and weight 
measurements. The sensors are 
manufactured by Measurement Specialties 
and designed to withstand a substantial 

amount of weight. The sensors deliver bell-

Figure 2.1 Portable WIM system architecture 

Figure 2.2 Measurement Specialties Roadtrax 
BL piezoelectric sensor 
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Figure 2.3 Portable WIM trailer before the installation of the 
power system, WIM controller and the REECE 

Figure 2.4 REECE device, 
courtesy of Diamond Systems 

shaped pulses when activated by passing vehicle axle loads. Although the sensor 
Roadttrax sensor is relatively expensive, the special road surface deployment of the 
proposed system requires a highly dependable and reliable sensor of this type.  

2.2.2 Housing trailer  
ODOT supplied a trailer with cabinet for our research project. Figure 2.3 shows the 
trailer and cabinet prior to installing the power system, WIM controller, and REECE 
device. 

 

 

 

 

 

 

 

 

The trailer power system was fabricated by wiring three 100 W/M2 Pro 4 JF solar 
panels manufactured by Siemens® Solar Industries. Maximum generated power is 75 
watts at over 4.4amps. Solar panels were interfaced with a Morningstar® SunSaver-20 
voltage regulator to adjust and control battery current up to 20amps with 16volts for both 
solar and load current. Solar panels charge two 100 amp/hour deep cycle batteries, 
which were placed inside the trailer along with the selected WIM controller and REECE 
device. 

2.2.3 REECE and embedded software development   
The REECE device is an embedded computer system with 
a Linux core operating system. REECE was first developed 
in 2005 by the PI and his research team with funds from 
the Oklahoma Transportation Center (OTC). The 2005 
project objective was to enable remote wireless access to 
ODOT traffic automatic vehicle classifying (AVC) sites. 
Diamond Systems Prometheus was used for the 
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embedded computing system.  

A new generation Diamond Systems Helios unit was designed for improved 
functionality. The Helios 800 vortex86DX CPU processor is equipped with four USB 
ports, six serial RS-232 ports, PS/2 mouse and keyboard ports, 10/100 Ethernet port, 
and ports, PS/2 mouse and keyboard ports, 10/100 Ethernet port, and a VGA port. In 
addition to four analog outputs, the system has 40 digital manageable Input/Output (I/O) 
lines connected to a built-in Data Acquisition (DAQ) board. 

2.2.4 WIM controller 
Portable WIM deployment utilizes an IRD iSINC Lite WIM electronic controller 
connected to the REECE through a crossover PC-PC Ethernet cable. This section 
explains the special configuration of the WIM system controller. The portable WIM 
deploys iSINC Lite to interface only with piezoelectric sensors. The following iSINC 
configuration is essential for appropriate portable WIM implementation: 

1- Disable loops 
2- Set a zero distance between axle sensors and loops 
3- Interface sensors with accurate module  

Subsequent mandatory configuration steps include creating a new site, configuring site 
parameters, and loading the classification scheme, as shown in Figure 2.5. Note that 
chosen settings and various menu factors, including values for each menu and 
submenu in the settings, are illustrated below.  
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Figure 2.5 Main steps for configuring the iSINC Lite as portable WIM station 
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Chapter III 

3 Sensor Installation and Highway Deployments 
3.1 Introduction 
This chapter reports single- and two-lane installation, including sensor layout and an 
affixing method developed after several portable WIM deployments. The research team 
implemented lessons learned to ensure acceptable road installation. By recording a 
lower level of sensor vibration, the number of detected signal ticks resulting from vehicle 
impact on the sensor is reduced, as is the number of undetected vehicles. Results 
obtained from deployments are presented in the succeeding chapters. 

3.2 Singe lane deployment 

3.2.1 Initial sensor layout 
Two 8ft metal steel fixtures were used to protect the sensors. Four inches of highly 
adhesive Bituthane tape with a 1in pocket were attached to the metal plates to encase 
and protect the sensor from direct exposure to vehicles tires. Materials were chosen to 
ensure rapid installation on a road surface and avoid prolonged traffic interruption. 

 After analyzing system performance during deployment one and two, the team revised 
the layout. An early deployment layout is illustrated in Figure 3.1.  

 

 

To improve performance, the ground surface sensory area was reduced to a minimum. 
For this configuration, BL sensor length was reduced to 6ft. Sensor signal quality from 
overpassing vehicles increased significantly. The revised sensor layout is illustrated in 
Figure 3.2. 

Performance improvement resulted from minimizing propagated vibration caused by 
vehicle impact with either the sensors or the fixture on which the sensors are held. 

Figure 3.1 Sensors layout in early deployments. 
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Twelve-foot sensors were shortened to a more effective 6ft length. Errant vehicle 
detection and classification were directly influenced by sensor vibration and number of 
ticks recognized by the WIM controller. A tick threshold is configured in the WIM 
controller to filter out noise from actual vehicles. 

 

 

3.2.2 Sensors fixture affixing methods 
As indicated earlier, sensor vibration increases errant vehicle detection. Hence, it is 
important that the fixture used to hold the sensors on the roadways is designed to limit 
vibration. The fixtures used for deployment were made of a 22 gauge, 8ft sheet of steel 
metal cut in specific dimensions to accommodate a piece of Mar Mac tape to house the 
sensor. Fixture width was 1ft, and 1in on each side edge was folded. Nail/screw holes in 
the leading edge facing traffic were drilled every 6in. Holes were drilled every 1ft in the 
back edge. The center of the sheet was sanded to a rough surface, and then heated to 
90 degrees Celsius for tape attachment. Mar Mac tape was placed on the opposite of 
roadside of the sheet and served as a cushion between the fixture and the road. The 
fixture was outfitted with tape and sensor before road installation to facilitate rapid road 
installation with nails or screws. 
 
The main portable WIM system field-testing and deployments were on concrete. The 
research team employed 3in concert screws instead of PK nails used on pavement. 
Concrete surface holes were drilled to a depth of 3in; concrete screws were inserted 
through the top of the fixtures. Sensor vibration was limited significantly, which reduced 
the number of undetected and misclassified vehicles. Of note is that each installation 
required 1-1/2 hours for expert installers.  

Figure 3.2 Revised sensor layout. 

13 
       



Final project report 

3.2.3 Site selection 
ODOT permanent WIM016 site is located on a concrete highway section of US-412 
near Chateau, OK. Its proximity to the OU-Tulsa campus made it a good choice for the 
majority of the study.  The portable WIM was positioned 75ft downstream from the 
permanent site. This section of highway is characterized by heavy traffic. However, far 
fewer class 9 trucks and significantly more passenger vehicles travel past previous 
deployment at WIM005 site located on US69 highway. The two lanes sensor 
deployment is shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

3.2.4 Site installation steps 
Best practices learned from the second deployment informed that the pocket tape 
should not be enlarged for sensor insertion. An enlarged pocket allows increased 
sensor vibrations and detection errors. Subsequent deployments used fishing wire and 
lubricant to ease sensor insertion into the pocket tape. See Figure 3.4. 

Three-inch concrete screws were used to attach metal fixtures to the road surface. Two 
portable Milwaukee battery-powered hammering drills were initially used to drill 3in deep 
holes into the concrete prior to inserting and firmly tightening the screws. Spare drill 
batteries and extra drill bits were carried on site for installation purposes. Single-lane 
deployment lasted approximately 3hrs and required two persons. One drilled the hole 

Figure 3.3 Two-lane portable WIM system deployment, near WIM16. 
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while another placed and fastened the fixture onto the roadway. Figure 3.5 shows the 
concrete installation of the fixture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three-inch concrete screws were used to attach metal fixtures to the road surface. Two 
portable Milwaukee battery-powered hammering drills were initially used to drill 3in deep 
holes into the concrete prior to inserting and firmly tightening the screws. Spare drill 
batteries and extra drill bits were carried on site for installation purposes. Single-lane 
deployment lasted approximately 3hrs and required two persons. One drilled the hole 
while another placed and fastened the fixture onto the roadway. Figure 3.5. shows the 
concrete installation of the fixture. 

 

 

 

 

 

 

 

 

 

Figure 3.4 Pocket tape insertion using fishing wire and lubricant  

Figure 3.5 The fixture affixing 
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3.3 Two-Lane deployments  
After proven affective, the sensor layout shown in Figure 3.6 was employed for all 
subsequent deployments. The configuration requires that all sensors be connected to a 
single WIM controller, thus minimizing the cost of the two-lane deployment. Coax cables 
connected to sensors on the far end of the trailer were protected by road tape, as 
shown in Figure 3.6. The research team discovered that the road tape did not provide 
adequate protection for the sensor. On the fourth day of deployment, the far end 
sensors were disconnected from the controller. This drastically shortened fields testing. 
After this, the PI determined that metal plates would suffice to protect far end sensor 
cables against the heavy traffic.  
 

 
Figure 3.6 Two lanes schematic 

3.4 Portable-specific configuration and calibration factors 
Default iSINC calibration settings and thresholds of permanent WIM sties cannot be 
ported or utilized for portable WIM configurations. Since portable WIM sensor 
installation is above ground, sensor vibration from high-speed traffic is significantly more 
than sensor vibration at a permanent permanent site. Therefore, sensor threshold-value 
settings at portable WIM sites were applied differently to default iSINC settings. Vehicle 
detection is highly correlated to tick threshold value. If set too high, the system fails to 
count axles; if set too low, the system falsely registers electronic noise as axle counts. 
Threshold range could be between 0 and 1,023. Portable WIM site threshold values 
proved to be significantly different from those at permanent sites. Although a threshold 
default value of 40 was set at permanent sites, values up to 150 were determined 
applicable for sensors experiencing a high number of ticks at portable sites. Sensors 
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embedded and flush on highway surfaces typically experienced between 20 and 30 
ticks. Tick number in the portable WIM system exceeded 100 in some instances. In 
spite of this, the enhanced sensor layout and improved affixing method, resulted in the 
system reporting tick values within the range reported by the permanent WIM system.  
The team conducted calibration practices similar to those proposed by IRD Inc. 
technical support engineers. After calibration, a setting of 1,660 was used for all speed 
bins for concrete deployments and a setting of 1,800 for all speed bins for pavement 
deployments.  

Performance improvement was based on minimizing propagated vibration caused by 
vehicle impact with either the sensors or the fixture housing the sensor. Twelve-foot 
sensors were shortened to a more effective 6ft length. Errant vehicle detection and 
classification were directly influenced by sensor vibration and number of ticks 
recognized by the WIM controller. A tick threshold was configured in the WIM controller 
to filter out noise from actual.  

3.5 Deployment durability 
Procedures for affixing the sensors to the roadway rendered the deployed system 
operable for several weeks. Regardless if PK nails or concrete screws were used, the 
team projected that roadway installation would provide quality data for more than two 
weeks. To the team’s consternation, some PK nails loosened their tight grip on the 
metal fixture after only one week. Figure 3.7 shows expected pocket-tape wear.   

 

 

 

 

Figure 3.7 Deployment durability sensors after 20-day deployment and 
then after 40 days. 
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Chapter IV 

4 Calibration and Field-Testing  
4.1 Introduction 
This chapter describes iSINC portable WIM controller configuration and calibration 
procedures. Calibration factors and configuration were implemented to achieve accurate 
WIM measurements. This chapter also presents results of WIM accuracy analyses 
conducted under a controlled environment in which a truck (hereafter known as test-
truck) with known axle weight and dimension was used to evaluate system 
performance. Test-truck axle weight and spacing, speed, and classification performance 
parameters are reported in this chapter. 

4.2 Portable WIM configuration 
4.2.1 Sensors thresholds and bounce adjustments 
During the first two deployments, the WIM IRD iSINC Lite controller required special 
configuration to overcome a significant amount of sensor vibration caused by high-
speed traffic. A different sensor tick threshold-value settings was applied to the default 
iSINC settings that are typically configured at the permanent WIM sites. 

4.2.2 Calibration method and special adjustments 
Calibration is imperative for each deployment at every site. Results from deployment 
one proved that calibration factors at permanent sites should not be employed at 
portable sites, as erroneous WIM measurements result. New calibration factors must be 
discovered using test-trucks. The portable WIM controller was successfully calibrated 
immediately after highway deployment (i.e., weight measurements were accurate within 
acceptable error). Results were consistent and repeatable. More details are provided in 
the following sections. 
 
An ODOT truckload of sand with known weight and length was used for testing. Test-
truck speed at time of sensor overpass is an important factor for calculating truck 
weight. Hence, the WIM controller must accurately measure truck weight prior to the 
start of the calibration process. Minor sensor separation (i.e., distance between the two 
installed sensors on one lane) adjustments were performed until an acceptable speed 
measurement was achieved. WIM speed should match driver-reported test-truck speed. 
This method considers human factor error. Notably, radar technology was used when 
available as an alternative method for obtaining more accurate vehicle speed 
measurements.  
 
Front axle weight (FXW) and gross vehicle weight (GVW) were calibrated by driving the 
test-truck multiple times over the sensors, and then inputting average WIM readings into 
the following calibration factor equation: 
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𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑊𝑊𝑊𝑊𝑊𝑊 𝐺𝐺𝐺𝐺𝐺𝐺

 * Current CF 

During weight calibration, both FXW and GVW parameters can be adjusted. A tradeoff 
between these two exists, as FXW may adversely impact overall GVW, and GVW may 
adversely influence FXW. Accordingly, balance between these two parameters was 
achieved by adaptively adjusting parameters during calibration. Calibration factors were 
determined for each speed bin (e.g., 10mph) to obtain improved WIM measurements. 
Although the same factors could be used for all speed bins, it is important to know that 
WIM measurements will deviate from their true actual values.  
The equation used to calibrate GVW can also be used to calibrate FXW. This procedure 
is required to obtain accurate overall weight measurements. The diagram in Figure 4.1 
depicts calibration methodology. 

 

 

Figure 4.1 Calibration Methodology 

Steps to navigate iSINC menus and perform WIM calibration are described in Figure 
4.2. Portable WIM calibration factors are significantly different from default values at 
permanent sites. IRD ships iSINC with default calibration factors of 4,000 for the first 
three speed bins. ODOT configured the permanent sites for calibration factors of 
10,500. After completing a third calibration, settings of 1,800 and 1,660, respectfully, 
were used for pavement and concrete deployments to obtain acceptable GVW for all 
speed bins.   

4.3 Field testing using test-trucks 
This section describes deployment results and observations for drive tests conducted 
with an ODOT class 6 sand truck. Results were used to evaluate the developed 
portable WIM system and its ability to accurately and consistently measure test-truck 
weight. An evaluation of the accuracy and inconsistency of weight measurements 
follows.  

(Eq. 4.1) 
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Figure 4.2 iSINC calibration steps for one sensor in the first lane 

4.3.1 Data analysis for the weight recorded by portable WIM system 
The research team conducted a series of 20 test drives using a 1996 ODOT class 6, 
International-4900 series dt466, 10-wheel sand truck filled with sand (i.e., non-shifting 
cargo). Four of the drive tests were erroneous (i.e., not detected by the portable WIM 
system, as indicated in the table below). Calibration was conducted, and system 
calibration factors were tuned two days prior to testing. No adjustments or further 
configuration changes were made during this round of field-testing. The average GVW 
error was limited to less than 7%, while FXW was limited to less than 1.5%. Portable 
reported weight measurements, axle spacing and weights, and calculated mean and 
standard deviation, as well as average errors, are listed in Table 4.1. 
Careful assessment of earlier deployments was vital for setting adjustments to the WIM 
controller, optimizing sensors layout, and determining the method for attaching the 
fixture to the roadway. These refinements enhanced the results obtained during the 
fourth set of test drives.  

In order to compare the portable WIM measurements to those measured by the 
permanent system during deployment three, the PI and his research team also recorded 
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test-truck WIM measurements obtained from the permanent WIM system, which was 
located in close proximity to the portable WIM site. Notably, the permanent site was 
calibrated two weeks prior to portable WIM deployment. Table 4.2 shows permanent 
WIM site measurements. The permanent site was able to achieve zero percent error in 
front axle weight measurements.  

Table 4-1 Accuracy of portable WIM drive test results. 
Run FAS 

(inch
es) 

SAS 
(inche

s) 

Sp
ee
d 

(m
ph
) 

FAW 
(lbs) 

SAW 
(lbs) 

TAW 
(lbs) 

GVW 
(lbs) 

Len
gth 
(ft) 

1 170 56 55 14,178 14,760 15,805 44,743 18 
2 170 56 55 13,825 15,532 16,701 46,058 18 
3 170 56 55 14,090 15,708 17,768 47,566 18 
4 171 56 55 16,074 15,342 17,314 48,730 18 
5 172 56 55 14,747 15,404 15,051 45,202 18 
6 171 57 57 14,438 14,981 16,551 45,970 18 
7 173 56 55 12,758 14,844 16,440 44,042 19 
8 171 55 56 15,382 15,170 17,649 48,201 18 
9 Error Vehicle Too  Slow     
10 170 54 54 14,888 15,267 16,992 47,147 18 
11 171 56 57 13,693 14,028 16,361 44,082 18 
12 173 56 57 13,402 14,280 14,385 42,067 18 
13 Error Vehicle Too  Slow     
14 171 56 55 13,905 14,994 16,586 45,485 18 
15 171 55 55 13,151 14,862 15,744 43,757 18 
16 170 55 55 14,090 14,130 16,679 44,899 18 
17 170 55 55 13,984 14,862 14,235 43,081 18 
18 173 56 55 13,111 15,029 14,562 42,702 19 
19 Error Vehicle Too Slow     
20 Error Vehicle Too Slow     

Mean 171 56 55 14,107 14,950 16,176 45,233 18 
SD 1 1 1 810 451 1,051 1,843 0 

Actual 166 54 - 14,320 34,260 0 48,580 18 

Averag
e Error 

3.0% 3.1% - 1.5% 9.1% - 6.9% 1.0% 

 

Table 4-2 Accuracy of Permanent WIM drive-test results. 

Run FAS 
(inche

s) 
 

SAS 
(inches) 

Speed 
(mph) 

FAW 
(lbs) 

2nd 
AW 
(lbs) 

3rd AW 
(lbs) 

GVW 
(lbs) 

Leng
th 
(ft) 

1 176 56 57 14,284 14,747 15,801 44,832 27 
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Run FAS 
(inche

s) 
 

SAS 
(inches) 

Speed 
(mph) 

FAW 
(lbs) 

2nd 
AW 
(lbs) 

3rd AW 
(lbs) 

GVW 
(lbs) 

Leng
th 
(ft) 

2 176 56 57 12,723 14,019 14,050 40,792 26 
3 175 56 57 14,593 15,607 14,509 44,709 27 
4 175 56 55 12,013 12,529 11,814 36,356 26 
5 176 56 57 15,029 17,115 15,510 47,654 26 
6 175 56 58 15,620 16,044 15,761 47,425 26 
7 176 56 57 15,691 16,048 15,938 47,677 26 
8 176 56 57 14,249 14,725 14,187 43,161 27 
9 175 56 57 14,174 13,376 15,095 42,645 27 

10 176 57 57 15,501 17,243 16,414 49,158 27 
11 176 56 58 12476 14628 14094 41,198 27  
12 176 56 58 12,965 14,937 13,971 41,873 26 
13 176 56 57 15,338 15,528 15,043 45,909 27 
14 175 56 57 15,250 14,619 14,945 44,814 27 
15 175 56 56 14,654 16,105 17,018 47,777 26 
16 176 57 57 15,334 16,445 15,461 47,240 27 
17 176 56 57 14,249 15,078 13,587 42,914 26 
18 176 56 55 13,852 14,350 14,443 42,645 26 
19 175 56 57 14,606 14,760 15,316 44,682 26 
20 175 55 56 13,803 16,158 14,063 44,024 26 

Mean 176 56 57 14,320 15,203 14,851 44,374 26 
SD 0.47 0.37 0.77 1,030 1,129 1,098 2,926 0 

Actual 166 54 - 14,320 34,260 0 48,580 18 
Average 

Error 
5.8% 3.8% - 0% 12.3% - 8.7% 44.3

% 
 

Table 4.3 summarizes results obtained from permanent and portable WIM systems 
during drive testing. The set of experiments indicated lower average error in GVW 
measurements, as reported by the developed portable WIM system. Aside from first 
axle weight measurements, test results illustrate that the portable WIM outperformed 
permanent WIM for both consistency (i.e., lower standard deviation) and average error. 

The portable WIM system reported consistent measurements, as did the permanent 
WIM system. GVW measurement errors were limited to 6.9% for the portable WIM, 
compared to 8.7% for the permanent WIM system. Portable WIM front and second axle 
spacing measurements were superior to permanent site measurements, as well. Only 
front axle weight reported by the permanent WIM was more accurate than the portable 
WIM. 
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Table 4-3 Portable vs. Permanent WIM comparison summary 

 GVW (lbs)  FXW (lbs) FAS 
(inches) 

 SAS 
(inches) 

Actual 48,580  14,320 166 54 
Portable Mean  45,233 14,107 171  55 

Permanent Mean  44,375 
 

14,321 176 
 

56 
 

Portable Standard 
Deviation 

1,146 810 1  1 

Permanent Standard 
Deviation 

2,926 
 

1,030  
 

0.24 0.15 
 

Portable System Error 6.9% 1.5% 3.0% 3.1% 

Permanent System Error 8.7% 0% 
 

5.8% 
 

3.8% 
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Chapter V 

5 Temperature Effect on Portable WIM Measurement 
5.1 Introduction 
This short chapter reports the efforts performed to examine the effect of temperature on 
the weight measurements. The design of the portable WIM system lacks the 
temperature sensor required to compensate for WIM measurement variation. The 
objective of these efforts to quantify the effect and determine if the design should 
include a temperature sensor. 

5.2 Experiment setup 
A temperature probe 108-L from Campbell Scientific and a Vantage Pro2 weather 
station from Davis were used to collect road surface temperature and weather 
conditions during the experiment. A data acquisition system collected and stored 
temperature measurements.  

The temperature probe has four connections: clear for shield ground; purple for signal 
ground; red for temperature signal; and black for voltage excitation. The connection is 
shown in the schematic of Figure 5.1. 

A temperature probe was used to interface with the data acquisition I/O board on the 
REECE system. The probe requires an excitation +5 volt, which was supplied by the I/O 
REECE board.  

 

 

 

 

 

 

 

 

 

The REECE I/O port 27 was connected to the black on lead of the probe. The 
temperature signal lead dwas connected on port 39. Both purple and clear connectors 
were connected to port 34 ( ground) on the REECE I/O connector, as shown in Figure 
5.2. 

 

 

Figure 5.1 Temperature probe schematics 
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Probe voltage measurements were converted into calibrated temperature values using 
a Steinhart-Hart equation. The equation interpreted the voltage reading based on 
thermistor resistance (Rs). The ratio of measured voltage (Vs) to the excitation voltage 
(Vx) is linearly related to (Rs), and the 41,000 ohm-fixed resistor, as shown below:  

Rs=1000*(Vx/Vs) – 41,000 

The software calculates Rs from the voltage ratio and converts Rs to temperature using 
the Steinhart-Hart equation:  

Tc(Celsius)  = 1/(A+B(LnRs)+C(LnRs)3) – 273.15 

whereas the coefficient: A = 8.271111e-4,  B = 2.088020e-4,  and  C = 8.059200e-8  

  

To convert temperature from Celsius to Fahrenheit degrees, the following equation was 
used: 

T_Feh = T_Cel *(9/5) +32; 

5.3 Portable WIM measurement analysis for campus deployment:  
A Ford club wagon (henceforth “van”) with known-weight was driven 57 times over WIM 
sensors at predetermined speeds and at various surface temperatures to determine 
weight measurement value consistency during similar temperature readings and to 

Figure 5.2 REECE data acquisition I/O 
connector 
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determine whether or not weight measurements obtained from the piezoelectric sensors 
vary with surface temperature. Analyzed data showed weight information obtained 
during testing changed as temperature varied. Data analysis obtained during drive tests 
indicated that vehicle weight decreases as temperature increases, as shown in Figure 
5.3. Note that these results are not conclusive. 

Weight measurements were not consistent. The WIM controller measured the van at 
varying weights even when road surface temperature was constant.  

 

 

 

 

 

 

5.4 Portable WIM measurement analysis for highway deployment: 
The PI and his research team investigated the effect of temperature on portable WIM 
system performance during a highway deployment. IRD iSINC WIM controller used in 
the portable system can be configured to apply correction factors to compensate for 
temperature variations. A temperature probe was connected to the WIM controller to 
provide temperature measurements for adjusting WIM calculations. However, the 
temperature factors and compensation were disabled in the portable WIM system to 
eliminate the need to incorporate a temperature probe into the design.  

During highway deployment, recorded air temperature varied from 67o F to 103o F. 
Class 9 GVW measurements collected from the portable WIM system were compared 
to those collected by the permanent system. Unlike the portable system, the permanent 
system uses a probe to compensate for variations in road subsurface temperature. The 
comparison manifested in the regression graphs, shown in Figure 5.4, and confirmed 
that the portable system performance during the PM periods at lower temperatures is 
better than AM periods. In fact, the “goodness fit” factor improved by 37% during PM 
periods.  

Figure 5.3 Weight measurments with temperature variations 
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5.5 Conclusion 
A temperature effect on the portable WIM measurements was confirmed. Although air 
temperature values varied little between AM and PM evaluation periods, WIM 
measurements demonstrated pronounced variation. To limit the effect of temperature on 
WIM measurements, a temperature probe should be included in portable WIM system 
design. 

 

Figure 5.4 Regression plot to detect temperature trends in portable WIM systems 
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Chapter VI 

6 Vehicle Signature Development Using WIM Data 
6.1 Introduction 
This chapter explains research activities conducted to develop signatures of heavy 
vehicles and to examine signatures uniqueness toward identifying heavy vehicles as 
they travel from one WIM site to another within the state of Oklahoma. Signatures are 
based on vehicle axle separation, length, weight, and class—all of which are 
parameters measured and provided by a WIM controller. Results of the signature 
development and algorithms are given in this chapter.   

6.2 Large-scale vehicle signature study and data mining 
A vehicle signature was developed to include parameters measured by the WIM 
controller, including GVW, axle weight, number of axles, and axle spacing. Speed 
measurements cannot be included in the vehicle signature, as values are variable. 
However, prior to vehicle signature development, it is important to confirm that 
measurements made by two WIM controllers installed at two different locations will yield 
the same measurements for the same vehicle, meaning that the WIM measurements 
are repeatable and accurate.  

Class 9 vehicles were chosen for signature development. A full year of WIM class 9 
truck data was analyzed to investigate nominal (or average) values of FXW and axle 
spacing. Figure 6.1 shows the histogram of class 9 FXW. Average value is 9,448 lbs, 
and standard deviation is 2,515 lbs. Average value proved to be consistent with typical 
class 9 FXW. However, standard deviation is larger than would be expected. This could 
be attributed to WIM calibration accuracy during data collection. 

 

 

 

 

 

 

Figure 6.1. Histogram distribution of class 9 FXW. 
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The first, second, and third axle spacing distribution is given in Figure 6.2. Notably, 
some class 9 trucks have a longer forth axle spacing, which indicates longer trailer 
beds, as shown in the bottom right illustration of Figure 6.2. 

 

 

 

 

 

 

 

 

 

 

 
Preliminary WIM data analysis shown above in the last two figures indicates a large 
deviation in class 9 FXW. This result contributes to the inaccuracy of unique vehicle 
signature development.  However, though limited, some variations in axle spacing can 
be used to identify various traveling vehicles.  

6.3 Vehicle detection at multiple WIM sites 
Although the initial analysis didn’t provide encouraging results, the research team 
developed a WIM data mining algorithm to identify vehicles that travel multiple WIM 
sites across Oklahoma roadways. When a vehicle passes a WIM site, its GVW, FXW, 
and FXS parameters are measured and stored in a database for future detection of the 
vehicle as it travels various sites. The algorithm attempts to identify the vehicle at a 
second WIM site station farther along the highway. Depending on distance between two 
sites, the algorithm is designed to examine data after a period of time calculated as 
equal to vehicle travel time to a second site, as estimated by Google traffic flow model.  

Figure 6.2. Histogram distribution of first, second, third and fourth axles spacing 
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The data mining algorithm was performed on vehicles traveling on I-35 between WIM 02 
and WIM104, as shown in Figure 6.3. 

 

Figure 6.3. Locations of WIM02 and WIM104 on I-35 

Distance between these two sites is 95m. An additional 15min window beyond 
estimated arrival time was added to allow for slow traffic flow. A vehicle's GVW, FXW, 
and FXS are searched throughout data for a match. Results of the algorithm are 
depicted in Figure 6.4. Only seven vehicles were matched when GVW deviation 
tolerance was limited to ±5% from the GVW registered at the first site. Fifty eight 
vehicles were matched when tolerance was increased to ±10%, and 100 were matched 
when tolerance was increased to ±15%. FXW mean error was 496 lbs and 782 lbs, 
respectively.  

6.4 Conclusion 
The number of vehicles that travel these two sites daily is in the order of thousands. 
Matching only 100 vehicles from such a large number of vehicles is not effective. 
Hence, the team concluded that GVW, FXW, and FAS parameters might not be ample 
to identify unique signatures of vehicles traveling past multiple WIM sites.  
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The 100 matched vehicles were not validated using other technology, including visual- 
or laser-based systems. Vehicles were validated using only WIM measurements. 

 

Figure 6.4. Data mining algorithm results 
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Chapter VII 

7 Portable WIM Aggregate Data Analysis 
7.1 Introduction 
This chapter presents results obtained by processing aggregated WIM data (i.e., data without 
per vehicle matching). Chapter IV presented a comparison study of portable and permanent 
WIM systems using test-trucks with known weights following a site calibration. Test-truck field-
testings typically lasted three to four hours. This chapter analyzes and compares aggregated 
WIM data collected at portable and permanent sites during a typical deployment. Deployment 
data is divided into three phases, each of which consists of roughly 15 days worth of data. 
Portable WIM system performance was highest during phase I. Portable WIM data severely 
deviated from permanent WIM data in phase III. 

Vehicle statistical distributions of FXW, GVW, vehicle classification, speed, and FAS (i.e., 
distance between the first and the second axles) are presented in this chapter. It is important to 
note that the permanent WIM site is assumed to provide accurate weight measurements, 
although this assumption may not hold or apply if the permanent site is out of calibration. 
However, this is not the case. The research team collected portable WIM data from ODOT 
WIM16 two weeks after ODOT performed site calibration there, and permanent WIM data was 
confirmed accurate.  

7.2 Vehicle count statistical distribution analysis  
This section presents detected vehicle distributions calculated for FXW, GVW, classification, 
speed, and FAS. Since the focus of this project was to track overweight trucks, the distributions 
presented in this chapter focus on class 9 vehicles—trucks with five axles and a single trailer. 
This work is important because FXW is typically used for automatic calibration of weight 
measurements. Most electronic WIM controllers ship with specific software procedures to 
perform automatic calibration based on class 9 vehicle first axle weight of 10,000lbs. 

7.2.1 Class 9 First Axle Weight (FXW) distribution 
Prior to data presentation, WIM data was conditioned by removing all records in which an error 
occurred during vehicle detection. Vehicle count distributions of class 9 FXW during all three 
phases are shown in Figure 7.1. Class 9 FXW is roughly standardized at a weight equal to 
10,000lbs. The figure confirms that the percentage of undetected vehicles during the last two 
deployment phases was extremely high, unlike phase one. The reason for the elevated errant 
vehicle detection was due to depreciation of piezoelectric sensor affixing.  

The mean FXW value of the portable WIM system was close to 10,000lbs in all three phases, 
while standard deviation was wider than that of the permanent system, as shown in the Figure 
7.1. 
Table 7.1 presents the calculated mean and standard deviation of the FXW measurements 
obtained by the portable and permanent WIM systems. On average, the portable WIM system 
provided a good estimate of first axle weight; however, its standard deviation proved wider than 
its permanent counterpart. Data quality of the portable WIM system during phase I outperformed 
data recorded during later phases.  
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Figure 7.1 First axle weight class 9 vehicles for phase I, II, and III respectively. 

Table 7-1 Class 9 FXW mean and standard deviation measured during phase I, II, and III 

 Phase I Phase II Phase III 
Portable Mean (lbs) 10,742 12,716 13,737 

Portable SD (lbs) 1,988 2,444 1,988 

Permanent Mean 
(lbs) 

10,143 10,233 10,306 

Permanent SD (lbs) 1,791 1,758.5 1,900.6 

7.2.2 Class 9- Gross Vehicle Weight (GVW) distribution 
GVW measurement accuracy is an important WIM system performance factor. GVW as related 
to vehicle count distribution for a calibrated WIM site should exhibit two or possibly three bell 
shaped curves. The first bell shaped curve (shown far left below) represents trucks carrying no 
loads, while the second (shown far right below) represents trucks carrying a full load. Figure 7.2 
shows GVW distributions for class 9 vehicles detected by the portable and permanent systems. 
Vehicle count distribution obtained from the permanent site clearly exhibits two bell shaped 
curves. On the other hand, portable WIM GVW distribution exhibited such distribution to a lesser 
degree (i.e., its two peaks are less pronounced than those produced by the permanent site).  
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7.2.3 Vehicle classification 
Vehicle classification distributions are presented in Figure 7.3. The classes investigated were 
large vehicles, including those in classes 6 to 13. These classes were the focus since this 
project was aimed at developing a portable WIM to monitor overweight trucks. As shown, the 
number of misclassified vehicles increased in phase II and III.   

7.2.4 Class 9 vehicle speed distribution 
Detecting accurate speed is important for calculating axle weight. Since different calibration 
factors are assigned to different speed bins, accurate speed determination is closely related to 
accurate vehicle weight calculation. The calculation of speed depends on accurate configuration 
of the distance separating road installation of the two sensors. During calibration and field-
testing, the research team adjusted separation distance to match the speed reported by the 
driver of the test truck. In hindsight, data could have been more accurate if the research team 
had used radar technology to acquire a more precise measurement of speed. 

Figure 7.4 illustrates speed distributions during phase I, II, and III. Again, speed measurements 
during phase I more accurately matched permanent site reported speeds.  

Table 7.2 presents calculated mean and standard deviation of speed measurements for class 9 
vehicles obtained by the portable and permanent WIM systems. 

Standard deviation stability is a clear indicator that the permanent WIM system is more 
consistent. Increase of standard deviation in the portable WIM system reflects the depreciation 
of its collected data with time.  

Figure 7.2 GVW comparison study, first, second 
and third phases respectively 
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Table 7-2 Speed mean and standard deviation for class 9 vehicles in phases I, II, and III 

 Phase I Phase II Phase III 
Portable Mean 

(mph) 
67.8319 65.9809 62.2681 

Portable SD (mph) 3.9487 6.6254 7.52 

Permanent Mean 
(mph) 

70.44 70.6338 70.2224 

Permanent SD 
(mph) 

4.2323 4.2638 4.2381 

 

 

 

 

7.2.5 Class 9 First Axle Spacing (FXS) distribution  
First Axle spacing in class 9 vehicles is standardized and fixed. Hence, it becomes another 
performance parameter that could be monitored, collected, and analyzed. As expected, 
accurate spacing calculations were achieved by the portable WIM system during phase I. Table 
7.3 presents the calculated mean and standard deviation of FXS measurements obtained by the 
portable and permanent WIM systems for class 9 vehicles. 

Figure 7.3 Vehicle classes comparison study first, 
second and third phases respectively 

35 
       



Final project report 

 

 

 

Table 7-3 FXS mean and standard deviation for class 9 vehicles in phases I, II, and III 

 Phase I Phase II Phase III 
Portable Mean (inches) 202.1581 203.5154 198.7089 

Portable SD (inches) 28.9671 34.4405 36.7099 

Permanent Mean 
(inches) 

209.3846 211.1689 209.4766 

Permanent SD (inches) 30.4166 30.3968 30.2555 

 
7.3 Aggregate linear regression analysis 
This section presents linear regression analysis on portable WIM data and compares GVW for 
class 9 vehicles collected from the portable WIM data against data collected from the 
permanent WIM site. The fact that both systems were deployed within close proximity implies 
that the relationship between measurements of the two should be linear, 𝑦𝑦 = 𝑥𝑥 ideally, where y 
represents the portable WIM data and x represents the permanent WIM data. The research 
team applied a simple binning scheme. GVW data was binned into 52 different weight bins. The 

Figure 7.4 Speed comparison study, Phases I, II, and III respectively 
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chosen range of weights was between 5,000 and 130,000lbs with a step size of 2,500lbs for 
each successive bin. 

 
Consequently, a simple linear regression model was built based on Eq. (7.1) to approximate a 
day-by-day relationship between the two sets of portable and permanent binned GVW data. 
Accuracy of the newly developed system was determined based on how close the linear model 
was to the ideal case (𝑦𝑦 = 𝑥𝑥). 

                                              0 1ˆi iy b x b= +                                                                        (Eq. 7.1) 

   where: 𝑏𝑏0 is the y-intercept of the relationship. 

     𝑏𝑏1 is the slope of the relationship. 

Coefficients 𝑏𝑏0 and 𝑏𝑏1 are determined using the Ordinary Least Squares method. 

 

Coefficient R is a statistical measure of how well the regression line approximates real data 
points; it is calculated using the formula in Eq. (7.2). A high R value indicates that the portable 
and permanent site data are highly correlated. 
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 where        0 < 𝑅𝑅 < 1            (Eq. 7.2) 

y  is the mean value of the measured output variable 𝑦𝑦 

Results of applying linear regression analysis on the aggregate data collected throughout the 
18-day deployment are shown in Figures 7.5 and 7.6. Each circle indicates a GVW 
measurement recorded at portable WIM and the corresponding measurement recorded at 
permanent WIM. A circle on the diagonal 𝑦𝑦 = 𝑥𝑥 line means that the same GVW measurement 
was recorded at both systems. As the circles depart from the diagonal line, an error due to 
unequal GVW measurements is indicated.   
 
The quality the GVW was monitored daily to detect signs of any system performance 
degradation during the first four days of the deployment, as shown in Figure 7.5. Results 
showed that system performance was improved during the few days following sensor road 
installation. It was expected that as more vehicles traveled the portable site, the performance of 
the system would deteriorate.  

Similar results of linear regression analysis for speed and FXW are shown in Figure 7.7 and 7.8, 
respectively. Results obtained for speed show exceptional performance by portable WIM during 
the first four days; after which in the following 15 days, system performance degrades 
significantly. First Axle Weight performance was slightly better in the first phase, although 
performance was relatively very poor in both phases.  
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Figure 7.6 GVW regression for the first 4 days of deployment 

 

Figure 7.5 GVW regression for days 5 to 19. 
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Figure 7.7 FXW regression analyses for the first 4 days (left) and days 5-19 (right) 

Figure 7.8 Speed regression analyses for the first 4 days (left) and days 5-19 (right) 
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Chapter VIII 

8 Portable WIM Per-Vehicle Analysis 
8.1 Introduction 
This chapter focuses on per-vehicle comparison of portable and permanent WIM site 
data to analyze accuracy of the collected data. This analysis was conducted 
immediately after permanent site WIM16 was calibrated with the intent to provide 
accurate WIM measurements. Hence, it was assumed that permanent WIM data is 
highly accurate.  
 
Per-vehicle comparison of vehicle records between the permanent and portable WIM 
systems was very challenging. Vehicle splitting occurred more frequently in portable 
WIM deployments, which caused an unequal number of vehicles detected by both 
systems. A greater number of vehicles were detected by the portable WIM than by the 
permanent WIM system. Furthermore, vehicle-processing times between both systems 
were unequal, primarily due to the fact that portable WIM systems are deployed on one 
or two lanes while permanent WIM are installed to monitor all lanes. The difference in 
the processing time ranged from a few milliseconds to a few seconds in worst-case 
scenarios. These included when the number of running WIM background tasks (i.e., 
processes) was high. Hence, an algorithm was developed to align vehicle records to 
perform a per-vehicle accuracy study.  
 
8.2 Time shift and alignment algorithm 
This section details the advance alignment algorithm (AALA) developed to align and 
match time-shifted per-vehicle records between the portable and permanent WIM data 
records.  
 
To align vehicle records, the research team extensively (and often manually) examined 
data collected by both systems to identify factors that skewed the time between them. 
The factors are explained in the following cases.  
 

1. Unequal number of vehicle detection or persistent misdetection of vehicles from 
either WIM systems: This scenario is the result of differences in on-surface sensor 
deployment at portable sites and in-pavement sensor deployment at permanent WIM 
sites. Unlike portable sites, permanent sites utilize an inductive loop to sense vehicle 
presence, and then trigger (i.e., prepare) piezosensors to measure oncoming 
vehicles. 
2. Different system processing times between the two measuring WIM devices: This 
scenario is mainly the result of monitoring an unequal number of lanes. Portable 
WIM is deployed to monitor one or two lanes while the permanent WIM monitors all 
lanes of the roadway. 
3. Deployment site: The two WIM systems are deployed at a distance from one 
another, thus, a vehicle detected at the first site will not be sensed at the same at the 
second. Additional time is required for the vehicle to travel to the other site.  
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Because vehicles travel at various speeds, interim time between various vehicle 
travel time will be different for each system. This phenomenon causes excessive 
misalignment during high volume traffic, which in turn adversely affects vehicle 
detection time, making it difficult for per-vehicle record comparison. 
4. Clock implemented in the WIM electronic controller continuously drifts: According 
to the WIM controller Operating Manual, each machine has two clocks. A detection 
clock adjusts to the system clock only when drifting exceeds 5 seconds. Thus, 
uncertainty is inevitable, even if the main system clock remains synchronized with 
Internet timeservers using Network Time Protocol (NTP). 
 

8.3 Advance alignment algorithm (AALA) development 
To eliminate the need to manually examine thousands of vehicle records during each 
deployment, the research team developed an algorithm to minimize time spent manually 
processing record-by-record WIM data.  Instead, WIM data was analyzed by using a 
newly developed algorithm that utilizes vehicle relative-detection-time.  
 
Initially, a quick scan of vehicle records was performed to identify records that belonged 
to the same vehicle and were accurately detected by both portable and permanent WIM 
controllers. Such vehicles typically arrived at WIM site with no vehicles arriving at the 
sites closely behind. Visually spotting these vehicles was relatively easy. Class, 
detection time, GVW, and length are vehicle parameters used to match vehicles 
between the portable and permanent WIM sites. The list of matched records was 
divided into two sets. The first set, namely “anchor”, was used to adjust for time 
discrepancies between the two WIM sites. The second list, namely “validate”, was used 
to evaluate algorithm performance and accuracy. The algorithm is assumed to be 100% 
accurate if it matches all vehicle records in validate list.  
The AALA flow graph is illustrated in Figure 8.1. The algorithm for computing relative-
detection-time is explained using the flow graph in Figure 8.2. 

Special algorithm adjustments: 
• The initial version of AALA incorporates milliseconds in its calculation, primarily 

because this number was found to be a determining factor in ensuring that timing 
error does not rapidly accumulate and cause an increased rate of under-
alignment. Such a phenomenon would impose the need for more data anchors. 

• We suggest that researchers manually identify 2% of the records—1% as 
anchors and 1% as testing records. 

• The revised AALA incorporates vehicle speed or travel time in the 
equation. 

• A detection window of 1.1 seconds is configured to compensate for 
margins and errors resulting from approximation in the analysis.   

8.3.1 Anchors extraction  
As aformentioned, implementation of ALAA requires manually extracting several data 
points visually identified as matching records (i.e., anchors), and then repeating the 
process daily. 
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Figure 8.1 Alignment using anchors algorithm (ALAA) flow graph 

A careful study of data from both sites suggested that using class 9 vehicles would be 
the most efficient and accurate method to identify the anchors. This is true due to the 
abundance of vehicles in this class at the chosen site, as well as significant similarity 
and relative stability with respect to time between system performance at both sites for 
this class. Figure 8.3 illustrates similarity by comparing vehicle number in each class 
reported by the portable WIM with their counterparts in the permanent site on two dates. 
It can be clearly inferred that although the overall vehicle detection and classification 
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capabilities of the portable WIM degraded with time, it remained superior for class 9 
vehicles. 

 
Figure 8.2 ALAA anchor-based relative-detection-time computation 

The procedure for extracting anchors included: 
a- Class 9 vehicles in both sites were separated. 
b- Times of occurrence for a certain number of records reported at both sites 

were compared to approximate constant delay between sites. 
c- Based on information from step (b), a matching record was manually 

identified and marked every two hours, as shown in Figure 8.4. 
d- The Sequence IDs of the anchors were saved in a table like the one shown in 

Figure 8.5. 
e- Steps b to d were repeated to extract test records for verifying ALAA 

accuracy. 
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Figure 8.3 Histogram of recorded classes of both sites on two different days. 

8.3.2 ALAA performance analysis  
While processing record-to-record alignment using ALAA several observations were 
made: 
 
a- Algorithm performance was relatively poor on weekends compared to workdays. 

Figure 8.6 shows day-by-day percent variations of under-matched vehicles. 
Furthermore, increasing the number of anchors on weekends did not improve 
performance. 
The under-matched rate was calculated using the following equation: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∗ 100 % 

 
b- The portable WIM experienced sudden drifts in time, possibly due to power failures 

that trigger a watchdog timer on the iSINC. These drifts terminated synchronization 
with the permanent site. As a result, more errors were added to the alignment 
procedure and consequently increased the difficulty of data alignment. The moment 
at which the portable WIM goes out of synchronization should be identified and 
registered as an anchor to calculate new time delays caused by such drifts. 
Fortunately, synchronization was automatically restored after both devices updated 
their times using NTP servers. 

We, further, define two parameters used to measure performance of the developed 
algorithm. Matching rate is the percentage of the number of algorithm-matched records 
to the total number of records in the validate list. Alignment rate is the percentage of the 
number of successful algorithm-matched records to the total vehicle records.  
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Figure 8.4 The extraction of anchors and test records. 

 

 

Figure 8.5 Anchors’ List 

Algorithm performance was evaluated using vehicle records collected during a four-day 
deployment, as shown in Table 8.1. Seven vehicle records were visually identified and 
matched in the validate list. These records were then used to evaluate the algorithm’s 
matching rate. The algorithm correctly matched all records in the validate list. The 
alignment rate achieved using the algorithm was 753/779 = 97% accounting for 3% of 
records unmatched or misaligned. Table 8.1 indicates algorithm performance measures, 
as reported.  
8.4 Per-vehicle analysis: 
This section presents a vehicle-by-vehicle comparison between permanent and portable 
WIM site data. The analysis presumes permanent WIM data is completely accurate and 
serves as a reference. This assumption, in fact, is not true because errors might and 

45 
       



Final project report 

most likely will occur at the permanent WIM site even when the site is newly calibrated. 
The only accurate method to examine portable WIM system accuracy is the use of static 
scales, this was not possible for the purposes of this project due to the excessive 
amount of time required to implement the method.   

 
Figure 8.6 Changes of under-matched records percentage. 

 
To measure deviation of portable WIM data from those collected by the permanent site, 
several statistical tools were employed: Root Mean Square Error (RMSE) given in Eq. 
8.1; Normalized RMSE or NRMSE given in Eq. 8.2; and correlation coefficient given in 
Eq. 8.3, along with its R2. The RMSE calculates the absolute deviation or error between 
the portable and permanent WIM measurements per vehicle record. The NRMSE 
calculates the percent error. These tools were used to characterize deviation as well as 
correlation in classification, GVW, FXW, FAS (defined as the distance between the first 
and second axles), and speed. 

Table 8-1 Accuracy and optimality of ALAA for permanent-portable record aligning 

Day Records Mismatching In-sample under-matching Out-of-sample alignment-rate 

09/13/2013 0/5 (0%) 
100% Accurate 

0/5 (0%) 
100% Optimal 

731/787 =93% 
93% Optimal 

09/14/2013 0/7 (0%) 
100% Accurate 

0/7 (0%) 
100% Optimal 

328/343 = 96% 
96% Optimal 

09/15/2013 0/7 (0%) 
100% Accurate 

0/7 (0%) 
100% Optimal 

237/253 = 94% 
94% Optimal 
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Day Records Mismatching In-sample under-matching Out-of-sample alignment-rate 

09/16/2013 0/7 (0%) 
100% Accurate 

0/7 (0%) 
100% Optimal 

753/779   = 97% 
97% Optimal 

09/17/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

707/736 = 96% 
96% Optimal 

09/18/2013 0/13 (0%) 
100% Accurate 

0/13 (0%) 
100% Accurate 

753/760 = 96% 
96% Optimal 

09/19/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

714/786=96% 
96% Optimal 

09/20/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

595/614=97% 
97% Optimal 

09/21/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

236/256 = 92% 
92% Optimal 

09/22/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

253/286 = 88% 
88% Optimal 

09/23/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

797/833 = 96% 
96% Optimal 

09/24/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

826/859=93% 
93% Optimal 

09/25/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

724 /758 = 96% 
96% Optimal 

09/26/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

759 /786 = 97% 
97% Optimal 

09/27/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

680 /715 = 95% 
95% Optimal 

09/28/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

270 /277 = 97% 
97% Optimal 

09/29/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

223/239=93% 
93% Optimal 

09/30/2013 0/10 (0%) 
100% Accurate 

0/10 (0%) 
100% Accurate 

706/792=89% 
89% Optimal 

10/1/2013 0/8 (0%) 
100% Accurate 

0/8 (0%) 
100% Accurate 

701/768=91% 
91% 
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                                               (Eq. 8.1) 

                     NRMSE = RMSE
average(y)

         𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦)

                                 (Eq. 8.2) 

where 𝑦𝑦𝑖𝑖 represents the portable WIM data and 𝑥𝑥𝑖𝑖 represents the permanent WIM data 

                             𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑥𝑥,𝑦𝑦) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

                                                (Eq. 8.3) 

where 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑦𝑦) is the covariance between the portable and permanent measurements; 
𝜎𝜎𝑥𝑥 is standard deviation of 𝑥𝑥, namely the permanent WIM data; and 𝜎𝜎𝑦𝑦 is the standard 
deviation of  𝑦𝑦, namely the portable WIM data.   

Correlation coefficient varies between [0,1], where 1 indicates strong correlation and 0 
indicates no correlation.  Correlation coefficient values of 90% or higher indicate high 
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linear correlation between portable and permanent WIM data. The coefficient R2, is 
calculated to present a statistical measure of how well the regression line approximates 
the scattered data points.  

Table 8.2 summarizes the calculated NRMSE and correlation. The correlation 
coefficient is strong between portable and permanent WIM data. Correlated WIM 
information is first axle weight followed by GVW data. The best correlated WIM 
information is speed, followed by vehicle type classification. Notably, a 26% error (the 
highest) was calculated for GVW.  

Table 8-2 NRMSE, Correlation between portable and permanent WIM systems. 

Parameter NRMSE Correlation 
Coefficient 

Classification 0.0340 (3.4%) 0.9475 

GVW   0.2905 (29%) 0.8030 

FXW 0.2681 (26.8%) 0.3200 

FAX 0.0558 (5.6%) 0.9611 

Speed 0.0407 (4%) 0.9669 

 

Regression results and R2 values of GVW, FXW, and speed are respectively presented 
in Figures 8.7 through 8.9. The FXW measurements obtained from the portable system 
were the least correlated to those collected by the permanent site. Table 8.3 indicates 
that 98% of detected vehicles classification matched between systems. Only 2% of 
vehicle classifications were incorrectly matched.    

Table 8-3 Classification matching results between portable and permanent WIM system 

Status Number of 
Occurrences 

Percentage  of 
Occurrences 

Total number of aligned records  9099  

Vehicle classification matching 8939 98.24% 
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Figure 8.7 Linear regression for permanent to portable GVW 
comparison 

Figure 8.8 Linear regression for permanent to portable FXW 
comparison 
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8.5 Probability of error 

8.5.1 GVW deference histogram:  
Overall error in GVW was 29% on average during phase I of deployment. It increases to 
53% during phase II. If GVW data was further examined to provide details of percentage 
of vehicles with a specific error during phase I, we found that 32% of vehicles had GVW 
error of equal or less than 10%; 49% of vehicles had GVW error of equal or less than 
20%; and 62% of vehicles had GVW error of equal or less than 30%. Complete analysis 
results are presented in Figure 8.10. 

8.5.2 FXW difference histogram 
Overall error in FXW was 23% on average during the phase I of deployment. FXW data 
was further inspected to obtain details about the percentage of vehicles with a specific 
error. We found that 39% of vehicles had FXW error of less than 10%; 60% of vehicles 
had FXW error of less than 20%; and 74% of vehicles had FXW error of less than 30%.  
The comprehensive analysis is illustrated in Figure 8.11. 

8.6 WIM data analysis day-by-day 
This section presents results of daily WIM data analysis of the last successful portable 
WIM deployment, which lasted a continuous 50 days. Portable and permanent WIM 
data was logged and analyzed to monitor portable WIM system performance, including 
WIM data accuracy and validity. Analyzed parameters included vehicle classification, 
gross vehicle weight, axle weight, and speed. 

Post deployment data processing and record-to-record alignment procedures were 
completed for the first 50 days. Several analysis techniques were applied to arrive at 
performance errors and accuracy of the developed portable WIM system. 

Figure 8.9 Linear regression of speed measurements obtained 
from permanent and portable systems. 
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Figure 8.10 GVW error histogram   

 

 
Figure 8.11 FXW error histogram   

System accuracy was evaluated by comparing all vehicle parameters, including class, 
speed, GVW, FXW, and others reported by the portable WIM with their corresponding 
records in the permanent site. It was assumed that the permanent site provided 
sufficient measuring accuracy to serve as a truth system. 
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Figure 8.12 shows day-by-day relative error in classification. It’s obvious, given a 
classification error as low as 3% that classification accuracy was excellent during the 
first 16 days of deployment, and degradation gradually increased as the number of 
deployment days grew.  

Classification error for each day was calculated using the following formula: 
 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑊𝑊𝑊𝑊𝑊𝑊 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛

𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛 
∗ 100%                (Eq. 8.4) 

 
Figure 8.13 shows daily changes in relative error for first, second, third, fourth, and fifth 
axle weight for class 9 vehicles. The error can be calculated using the following formula: 
 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = |𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
∗ 100%                        (Eq. 8.5) 

 
Figure 8.12 The relative classification error of portable WIM 

It can be infered from the figure that the fourth axle weight measurement is highly 
inaccurate compared to other axle measurements. More investigation should be 
performed to determine the cause.  
Figures 8.14 and 8.15 depict error in measured speed and GVW, respectively. From 
these figures we conclude that the portable WIM system exhibits a stable performance 
in all measures for the first 16 days of deployment. Sudden spikes in error rates occur 
afterwards, requiring system re-calibrated or sensors replacement. 
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Figure 8.13 Daily relative error in axles’ weight 

 
Figure 8.14 Daily relative speed error. 
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For approximate simple model of systems performance, several statistical and graphical 
analysis techniques were used to explore the relationship between measurement error 
and various vehicle parameters, including weight and speed. Of interest was 
determining how relationships changed over time. 

Figure 8.16 shows distribution of GVW for class 9 vehicles for deployment days 4 and 
32.  

Clearly the permanent site remained approximately a fixed distribution, while distribution 
of the portable WIM drifted to a higher mean value, as illustrated in Figure 8.17. Also, 
the number of vehicles detected at the portable site dropped significantly when 
compared to the permanent site. 

To determine parameters most affecting measurement accuracy, relationships between 
error, speed, and true weight were investigated by means of simple linear regression 
and curve fitting. 

 

Figure 8.15 Daily relative GVW error. 

Figure 8.18 depicts the relationship between relative GVW error and true weight of 
vehicles, assuming permanent GVW is sufficiently accurate during different days of 
deployment. Several curve fitting algorithms (e.g., polynomial, Gaussian, and rational 
fitting) were tested; however, the following rational fitting equation produced the highest 
“goodness of fit” factor (R2) when compared to others: 

                            𝑦𝑦 = 𝑎𝑎 ∗ 1
𝑥𝑥

+ 𝑐𝑐      (Eq. 8.7) 
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where 𝑦𝑦 is the relative GVW error and 𝑥𝑥 is the true weight of the vehicle. 

 
 

From this relationship we can deduce that the error in GVW measurement will be 
significantly higher for lighter vehicles than heavier ones. One possible explanation is 
that lighter vehicles experience more vibration and oscillation. As such, they add more 
noise to the piezoelectric sensors signal.  

 

Figure 8.17 Daily changes of mean GVW 

Figure 8.16 The distribution of class 9 GVW in days 4 and 32 
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Figure 8.18 The relationship between GVW error and true GVW 
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Chapter IX 

9 WIM Error Modeling and Site Calibration Monitoring  
9.1 Introduction 
In previous chapters several methods for analyzing portable WIM system performance 
were introduced. Most methods were based on statistical tests and comparisons 
assuming the following: 

a- Permanent WIM sites provide highly accurate measurements of class, speed, 
GVW, FXW, and other factors, rendering it applicable as a ground truth system. 

b- Accuracy is maintained during deployment. 

Although such assumptions are acceptable within certain boundaries, a 2013 study of 
classification and detection accuracy variations of ODOT’s WIM16 site confirmed that 
WIM classification inaccuracy grows exponentially over time. 

Figure 9.1 shows changes in number of vehicles detected and class 0 records (i.e., 
records not classified) for site WIM16 throughout 2013. A significant improvement in 
performance following site re-calibration is evident. 

Figure 9.2 depicts exponential growth in classification inaccuracy prior to site re-
calibration. 

Previous assumptions might lead to increasing performance analysis error. A new 
approach will leverage highly accurate WIM16 measurements following recalibration 
that can be used for developing an optimal statistical model for portable WIM 
measurements and for evaluating the system’s accuracy by studying temporal 
performance changes with respect to an optimal model. 

 

Figure 9.1 Changes in WIM16 traffic volume and number of class 0 during 2013. 
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Figure 9.2 Exponential growth in number of class 0 vehicles prior to re-calibration. 

In this chapter several machine-learning algorithms are utilized to build a multivariate 
statistical model for describing optimal WIM station performance using data obtained 
after WIM16 calibration. Portable WIM performance can then be evaluated by 
measuring the correlation between newly collected data and the obtained optimal 
model. ODOT can incorporate this algorithm to examine WIM data quality collected at 
the sites, and then monitoring calibration state of permanent or portable WIM sites. The 
algorithm can also be implemented for processing real-time data.  A proposed 
calibration software is presented at the end of this chapter. 

9.2 Related work 
Transportation research centers around the nation have utilized various methods for 
evaluating WIM systems accuracy. Most have been based on comparison with a ground 
truth system (e.g., static scale stations) or statistical quality assurance charts (e.g., 
CUSUM) to maintain statistical properties of the system within a predefined acceptable 
range. 

In [29] Virginia WIM site performance was evaluated by calculating relative error in 
GVW measurements and comparing results with a nearby static scale. Researchers in 
[28] proposed using GVW CUSUM charts to detect WIM sensor drift. 
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Outlier (i.e., anomaly) detection algorithms have been widely used to evaluate sensor 
systems. A simple estimating approach in [30] detected anomalies using histograms to 
evaluate wireless sensor network performance in real-time. Authors in [31] blended 
three techniques (namely multivariate Gaussian model, principal component analysis 
(PCA), and a kernel functions based model) to detect anomalies in acoustic sensor 
networks. 

Anomaly detection algorithms haven’t typically been used for traffic data analysis and 
evaluation. A research team at Carnegie Mellon University studied the viability of using 
various anomaly-detection techniques for analyzing WIM data. Their investigation 
focused on applying Rectmix, Percentile, and Daikon techniques for evaluating WIM 
station performance in Minnesota [32]. Researchers’ algorithms used human 
intervention to define outliers among a training set. 

The next chapter investigates the application of a multivariate Gaussian anomaly 
detection technique for analyzing permanent and portable WIM systems. 

9.3 Outliers (Anomaly) detection 

9.3.1 Introduction 
Because WIM data accuracy deteriorates over time, a suitable statistical tool must be 
used to monitor changes in data characteristics. Control charts (e.g., CUSUM and 
Shewhart’s) are commonly used tools for this purpose. Although charts are powerful 
tools for quality control, they cannot be used to analyze and identify features of 
individual records with low probability of occurrence and, consequently, a high likelihood 
of being erroneous (i.e., outlier).  

Identifying outliers in a dataset provides important information about system 
performance (e.g. relative number of records classified as outliers and their relative 
location with respect to the optimal model as indicators). Furthermore, identifying 
outliers aids in determining physical causes for changes in system response and 
inaccuracy. 

9.3.2 Algorithm formulation 
Given that a dataset consists of 𝑛𝑛 observations { }(1) (2) ( ), ,......, nX x x x=   (with each 

observation having a number of 𝑚𝑚 normally distributed features) and that a subset { }T    
of 𝑋𝑋 with length 𝑘𝑘 has certain statistical characteristics previously known to reflect an 
accurate representation of the underlying random process that generated the data, it is 
possible to find an 𝑚𝑚 dimensional multivariate normal distribution that can be 
considered an accurate statistical description of the random process. The equation for 
calculating the multivariate normal distribution is: 

   1
1

1 1( ,..., ) exp( ( ) ( ))
2(2 )

T
x m m

f x x x xµ µ
π

−= − − Σ −
Σ

  (Eq. 9.1) 

59 
       



Final project report 

where 𝜇𝜇 is a vector that contains the mean values of the 𝑚𝑚 features and Σ is the 𝑚𝑚 ∗𝑚𝑚 
covariance matrix. 

Figure 9.3 shows a scatter plot of Feature 2 vs. Feature 1 for a hypothetical two-feature 
dataset with normal distributions, as shown in Figure 9.4 

After calculating the distribution from the training set, test data in set 𝑋𝑋 is plotted against 
it, and then similarities for each observation in 𝑋𝑋 with respect to the resultant distribution 
is calculated by means of Mahalanobis Distance, as defined by the following equation: 

1( ) ( ) ( )T
MD x x xµ µ−= − Σ −   

Threshold 𝑇𝑇ℎ can be specified given that 𝐷𝐷𝑀𝑀(𝑥𝑥) > 𝑇𝑇ℎ for the observation under study is 
marked as an outlier; otherwise, 𝑖𝑖𝑖𝑖 is marked as a normal observation. 

Figure 9.5 represents the bivariate normal distribution of the hypothetical dataset in 
Figure 9.3 and its corresponding elliptic contour plot. 

Notably, the simple Euclidean Distance from the mean cannot be used for multivariate 
statistical analysis except when the contour plot is characterized by concentric circles. 

Figure 9.6 shows dataset 𝑋𝑋 scattered on the contour plot with outliers colored in red and 
normal observations in blue. The Mahalanobis Distance threshold used is 𝑇𝑇ℎ = 4. 

 

Figure 9.3 Feature 2 vs. Feature 1 scatter plot. 

  

(Eq. 9.2) 
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Figure 9.4 Distributions of Features 1 and 2. 

 

 

Figure 9.5 Bivariate distribution of Feature 1 and 2 and corresponding contour. 
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9.3.3 Detecting outliers in WIM16 data 
Detecting outliers in WIM data aids in performance assessment of these systems by 
monitoring changes in the number of vehicles classified as outliers along with their 
respective location on the multivariate distribution. It can also be used as an early stage 
of a supervised classification algorithm for generating accurate classification training 
data. 

To apply the algorithm for WIM16, a sufficiently large amount of system data known to 
be highly accurate in terms of classification and speed/weight measurements must be 
used to train the algorithm and find the standard multivariate normal distribution. 
Volume analysis shown in Figure 9.1 indicates unsurpassed performance for days 
immediately following re-calibration. This assumption was supported by an accuracy 
test that occurred October, 18 2013, and included classification and speed 
measurement validation using a camera and a Doppler radar. Figure 9.7 depicts 
histograms of class and speed obtained by WIM16, camera, and radar. It’s evident that 
there is a slight deviation in the mean value of speed between the radar and WIM16. 
However, we believe the shift in radar was caused by an uncompensated cosine-effect 
error. This means that data collected during a two week period between 08/22/2013 and 
09/05/2013 was appropriate for algorithm training. 

 

Figure 9.6 Scatter of test observations on training contour plot. 
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Training data included 33,695 records, 11,407 of which were Lane 0 and the 
remainders randomly distributed across three other lanes. Because the portable WIM 
system is deployed only on Lane 0, we were concerned about data recorded on that 
specific lane. 

 

Figure 9.7 Classification and speed accuracy of WIM16. 

A classification analysis of the WIM16 site showed that more than 65% of recorded 
vehicles were class 9. See Figure 9.8. As such, the balance of this analysis is primarily 
focused on class 9 vehicles. 

Three main features (namely speed, GVW, and FXW) were chosen to build standard 
multivariate normal distribution from the training set. These three variables were chosen 
because their accuracy is indicative of various system component performances. For 
example, speed is directly related to the magnetic loop performance, and weight is 
directly related to piezoelectric sensor performance. 

In particular, fourth axle weight was chosen because of its highly linear relationship with 
GVW compared to FXW. Furthermore, we previously demonstrated that portable WIM 
fourth axle weight measurements experience severe inaccuracies when compared to 
other axles. Figure 9.9 illustrates the deviation from the linear relationship between 
GVW and fourth-axle weight on day 25 of the deployment when compared with data 
from day 1. This phenomenon serves as a good indicator of declining accuracy of 
portable WIM sensors and implies that it would be easy to capture records causing 
errors by studying the distribution of “weight ratio” (i.e., creating a new feature that takes 
the value resulting from dividing GVW by fourth-axle weight) as opposed to studying 
absolute weight. 

Figure 9.10 illustrates the relationship between GVW and first- and fourth-axle weights. 
Value of “goodness of fit” (𝑅𝑅2) for both regressions clearly shows that fourth axle weight 
and GVW are nearly linearly related. 
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Figure 9.8 Percentage of class 9 vehicles detected following calibration. 

 

Figure 9.9 Linear regression of GVW and fourth-axle weight for days 1 and 52. 

Accurate implementation of the multivariate outlier detection algorithm requires all used 
features to be normally distributed. However, this is not the case for class 9 GVW 
distribution, as can be inferred from Figure 9.11. 
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Figure 9.10 Relationship between GVW and first- and fourth-axle weights. 

Expectation Maximization is a numerical algorithm for maximizing functions of several 
variables. The algorithm is widely used in solving a special but important problem: the 
estimation of parameters of a mixture of Gaussians from a set of data points [26]. 

Given that a set of data points is generated by multiple processes (e.g., two lines), 
modeling two processes necessitates estimating: 1) parameters (e.g., slope and 
intercept) of the two lines; and 2) the assignment of each data point to the generating 
process. The principle behind EM is that each step can be easily addressed assuming 
another is solved. Assuming each data point assignment is known, the parameters of 
each line can be estimated by taking into consideration only points assigned to it. 
Likewise, if parameters of the lines are known, each point can be assigned to the line 
that fits it best [27]. 

Thus, the basic structure of an EM algorithm can be explained: 

• Start with random parameter values for the two models. 
• Iterate the following until parameter values converge: 

- E step: assign points to the model that fits best. 
- M step: update the models’ parameters using only points assigned to it. 

Granted, the mathematical interpretation of EM is more complicated than the two 
aforementioned steps. However, this concern is beyond the scope of this report. 

The authors of [28] proposed using EM to split class 9 GVW data into three Gaussians: 
the first associated with empty trucks; the second with partially-loaded trucks; and the 
last with fully loaded trucks. However, the observed weight-averaging behavior of the 
portable WIM station made makes the distinction between three Gaussians more 
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difficult and nearly impossible for EM to converge. Figure 9.11 compares class 9 GVW 
distribution among portable WIM station and WIM16. 

 

Figure 9.11 Distribution of class 9 GVW in permanent and portable WIM. 

Applying EM on GVW training data resulted in two Gaussians, as illustrated in Figure 
9.12, with the following parameters: 

Table 9-1 Mean and standard deviation for unloaded and loaded trucks. 

 Mean Standard Deviation 

Unloaded Trucks 34.911 Kips 6.531 Kips 

Loaded Trucks 69.854 Kips 11.351 Kips 

 

After splitting GVW into two Gaussians, the linear relationship between GVW and 
fourth-axle weight was exploited to generate a new feature by dividing the former by the 
latter. Two multivariate normal PDFs were generated using speed and the new feature, 
which will be called “weight ratio”. Dividing GVW by fourth-axle weight had two 
advantages. Initially dimensionality was reduced (i.e., the multivariate PDF is now 
calculated for two features, namely speed and weight ratio, instead of three), while the 
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same amount of information was maintained, hence, reduced computational complexity. 
Also, the generated feature had a PDF more similar to the Gaussian distribution. 

 

Figure 9.12 Results of Applying EM on WIM16 class 9 GVW data 

Figures 9.13 through 9.16 show the resulting multivariate models for both loaded and 
unloaded trucks. 

 

Figure 9.13 Histograms and PDFs of speed and weight ratio for unloaded trucks. 
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Figure 9.14 Bivariate model of unloaded trucks. 

 

Figure 9.15 Histograms and PDFs of speed and weight ratio for loaded trucks. 
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Figure 9.16 Bivariate model of loaded trucks. 

Figure 9.17 depicts a basic flow diagram for analyzing WIM16 data. Analyses 
commenced August 1, 2013, and ended December 31, 2013. 

 

Figure 9.17 Anomaly detection flow diagram. 
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Figure 9.18 Relative number of outliers in WIM16 data. 

9.3.4 Detecting outliers in portable WIM data 
The model obtained in 3.3 was used to analyze portable WIM station performance. 
Speed, GVW, and fourth-axle weight of all class 9 and class 11 vehicles recorded at the 
portable site were used to fit each record to the model and subsequently determine their 
correlation factor. Class 11 was included because the portable WIM misclassified an 
inordinate amount of class 9 vehicles as class 11 after few days of deployment. Figure 
9.19 shows histograms for GVW and class for selected days from deployment 
beginning and end. Finally, Figure 9.20 illustrates daily changes in outliers’ percentage 
of portable WIM data, excluding holidays. The relationship of system performance with 
time, see Figure 9.21, was approximated by the following function with a “goodness of 
fit” factor 𝑅𝑅2 = 0.771: 

98.6* ( ) 108.5currentTimePercentageOfOutliers erfc
totalNumberOfDays

= − +   

The error function is suitable for fitting the temporal changes of outliers’ percentage 
because the range of its absolute value is [0 1]. Thus, manipulating the error function 
can produce a new function with values in the range [0 100], which is the same range of 
the percentage values. 

(Eq. 9.3) 
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Eq 10.3 indicates that portable WIM inaccuracies will be more than 50% after 0.4 of the 
deployment period. 

 

 

 

 

Figure 9.20 Percentage of outliers in portable WIM. 

 

Figure 9.19 Histograms of GVW vs. class for 
days 1 and 41. 
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Figure 9.21 The relationship between system performance and time. 

 
9.4 WIM data quality monitoring software   
This section present the software developed to automate monitoring site calibration. 
Many statistical and quality assurance algorithms back this software. ODOT personnel 
are alerted when a site provides poor WIM data due to miscalibration. 

9.4.1 Software architecture  
The research team laid the full architecture of the WIM monitoring software. This 
software monitors data quality retrieved from WIM sites, including classification and 
weight validation. The software also monitors deviation of weight recorded for class 9 
vehicles from the mean of its historical values. Quality of classification results recorded 
by the WIM site is monitored, as well. ODOT personnel are notified when WIM data 
quality is not sound due to miscalibration or misclassification.  
 
A centralized software written in C# monitors WIM data quality. This is realized by 
reading each WIM file data generated daily by the WIM sites deployed across the state 
of Oklahoma. The software then extracts the daily count and weight data of each 
vehicle class for comparison with historical values recorded on each WIM site. 
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This approach is database-centric validation, where our validation software is 
comparing the current acquisitioned values with the historical ones to elicit and send an 
alert if data quality degrades. 
 
After the WIM file is processed, there are two options for exploiting the statistical 
methods researched and described in previous reports to achieve WIM quality 
monitoring. We can either embed in our C# software the statistical control charts 
mathematical equations to achieve the statistical monitoring of the data quality, or 
alternatively, utilize existing implementation by Matlab®. Metlab is a high-level 
computing environment widely adopted by scientists and researchers around the world.  
Advantages are the richness of libraries available in one context. Statistical control 
charts are one among many mathematical algorithms included in the program. For 
example, as the statistical control chart highlights WIM site data as out-of-statistical 
control on a specific date, the monitoring software send alerts to designated ODOT 
personnel via text-messages or emails. The block diagram shown in Figure 9.22 
illustrates the architecture of monitoring software. This software activity diagram 
describes the sequence of the monitoring software functionalities. 
 

9.4.2 Software Implementation  
The research team implemented WIM monitoring software that monitors WIM data 
quality, including vehicle classification and weight. The software detects deviation of 
weight recorded for class 9 vehicles from the mean of its historical values. This also 
observes the quality of vehicles classification recorded by the WIM site. The software 
alerts ODOT personnel when the WIM data quality is suffering due to miscalibration or 
misclassification.  

We chose to implement the monitoring software in C#.NET because the Dynamic Link 
Libraries (DLLs) provided by IRD to read the iSINC generated binary files are developed 
in DotNet. We have previously realized reading of WIM data file within a long-running 
software. The software’s robust performance is achieved by the operating system. The 
latter is responsible for observing its operations, recycling its resources, and restarting it 
in the event that it freezes or malfunctions. 

Matlab R2012a with C# were the software used to implement calibration monitoring 
application.  Common Object Module (COM) is a well-known technology for realizing 
inter-software communication. This is achieved when an application establishes a COM 
server (e.g., Matlab) and waits for system calls, and another software application (C#) 
that sends requests to the server. In order for tC# software to achieve interaction with 
Matlab, we added the DLL reference to our project context. The name of the application 
is "Matlab Application (Version 7.10) Type Library". 

The next steps are: 
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1- Through the project attached Matlab DLLs, we created a single Matlab COM 
server. Although this step takes the most time, once it is created all Matlab 
Application Programming Interface (API) calls will be directed to the single 
established COM server. 

 

Figure 9.22 WIM quality software architectures 

    

2- We created a single instance of Matlab using the Activator class, which is a core-
system class in DotNet framework capable of creating object types either locally 

For every WIM site, access the daily 
collected WIM files

Process these files via Common Object Modul (COM) 
Technology connection with IRD Dynamic Link Libraries 

(DLL)

Insert the daily number vehicle in each class to the 
database(or store it into a csv file)

Insert the daily mean of GVW values of all vehicle classes to 
the database(or store it  into a csv file)

Forward these values to Matlab software via COM 
technology

Excute Statstical Control Charts functions of the forwarded 
data

Out of statstical Control?

Sent alert of 
poor data quality
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or remotely. This class is also used to acquire a reference to an object that is 
instantiated and allocated-in-memory.  

3- Create a single Matlab server will tune monitoring software performance and 
reduce overhead in utilizing computer resources, as every instance of Matlab 
reserves 220 MB from the heap memory.  

4- Using Put methods is required to pass command parameters to Matlab. We 
selected PutWorkspaceData method whose signature takes three parameters. 
First is the chosen name of the new Matlab variable. Second is “base”, and the 
third is the variable value forwarded to Matlab.  

5- Using GetVariable method is necessary to acquire a computed variable from 
Matlab. Although C# is a strongly typed programming language, we chose to 
receive this value via implicitly typed variable by preceding the creation of this 
variable with the keyword var. This is important to achieve flexibility and 
reusability in our implementation of Matlab-to-C# inter-communication. 

Given that the Matlab statistical control chart tags a WIM site data as out-of-statistical 
control, the monitoring software triggers alerts to the designated ODOT personnel. Two 
methods of notification were implemented: emails and text messages (i.e. Short 
Message Service (SMS)). Hence, an alert message will be sent to the designated 
ODOT employees’ cell phones and email addresses. The first alerting method was 
developed using Simple Mail Transfer Protocol (SMTP) implementation in C#.NET. An 
email from WimDataQuality@gmail.com is sent to all registered ODOT recipients. 
Software implementation involved creating an SMTP client. The following parameters 
must be forwarded to the SMPT client: 1- The address and port of the SMTP server (i.e. 
Gmail and its port); 2- Indicating the usage of Secure Socket Layer (SSL); 3- Passing 
the credentials of source email account; and 4- Destination email address, message 
subject, and message body.  
The recipient’s names and contact information are stored in a database created for that 
reason. Figure 9.23 shows a normalized sub-database diagram to store the 
aforementioned information.  
 
Through a GUI, the monitoring software has the capability to add ODOT personnel to 
the notification list when the WIM data quality becomes inaccurate. Figure 9.24 shows 
user-interface wherein the software administrator is capable of adding-removing-
modifying contacts’ information in the system. 

Another alerting method was dependent upon Application Programming Interface (API) 
provided by the SMS gateway company. These APIs facilitate pushing the composed 
text message to the company’s server, and then onto designated cellphone numbers. 
The provided APIs features a Hypertext Transfer Protocol (HTTP) web request, which 
formulates messages encoded with Universal Character Set Transformation Format 
with 8 bits (UTF8). The SMS gateway company will send an okay response if the SMS 
was successfully delivered.  
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Figure 9.24 Email addresses GUI 

 

 

 
  

Figure 9.23 Sub-database diagram of the monitoring 
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Chapter X 

10 Conclusion 
This report presents results of a newly developed portable WIM system that uses off-
the-shelf components and commercially available WIM controllers. The commercial 
WIM controller used in this project was IRD iSINC Lite. The fabricated portable system 
could be promoted as an alternative WIM monitoring solution to permanent WIM 
systems and/or static scale stations, both of which are extremely expensive to install on 
highways. The portable WIM uses RoadTrax BL piezoelectric class-1 sensors, 
galvanized metal fixtures equipped with pocket tapes to house the sensors, and a trailer 
with cabinet to house WIM electronics, batteries, and REECE device for real-time 
monitoring. The system is solar powered with three 100-Watt panels. Total cost of 
system is roughly $20,000. 

Many factors influence the accuracy of the WIM measurements made using a portable 
system. One of these is the piezoelectric BL sensor vibration was determined to be the 
primary factor for undetected vehicles.  Improper installation of the sensor was 
suspected to allow the sensor to vibrate within its pocket when a vehicle axle impacted 
it. In turn, the WIM controller detects and registers a large number of ticks due to one 
axle impact. This results in either over counting or misdetection, depending on the WIM 
configuration—in particular, the tick filtering threshold. A method to firmly affix the 
sensor onto the ground was developed and proved successful. Another approach to 
limit vibration is to reduce the size of the piezoelectric strip (thus reducing its sensing 
capacity) and position the sensor to cover part of the lane area so only one tire impacts 
it. Six-foot sensors were found suitable for low vibration deployment. These two 
techniques provided extended periods of deployments with acceptable portable WIM 
measurement and data quality. 

Default calibration factors used for sensors embedded in the roadway are not suitable 
for on-ground sensor installation used for portable WIM setups. Doing so causes 
significant weight error and inaccurate vehicle classification. Hence, portable WIM 
systems should be calibrated at deployment site. A new calibration is required each 
time the portable WIM site is changed. It is advised to use calibration factors per speed 
bin to increase weight accuracy.  

The portable WIM system was deployed three times at two locations: US69 highway 
with pavement-type roadway and US412 with concrete-type roadway. System 
performance showed acceptable WIM measurement results with only slight variation 
during the first 15 days of deployment. Portable WIM data was compared to permanent 
WIM data collected at co-located sites. Error and regression analyses were carried out. 
Root mean square errors and correlation coefficient were calculated for GVW, speed, 
classification, FXW, and FXS for each vehicle type. Results indicated a significant error 
of 29% when comparing portable and permanent GVW. Correlation coefficients were 
found above 80% for most studied system performance parameters, indicating that 
portable WIM data is highly correlated with permanent site data.  
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